CRYOPRESERVATION OF GENETIC MATERIAL COLLECTED POST-MORTEM FROM MALE GRAY BROCKET DEER MAZAMA GOUAZOUBIRA FISCHER, 1814

Assumpção, Teresinha Inês and Santos, André Luiz Quagliatto

Teaching and Research Laboratory in Wild Animals, Federal University of Uberlandia, 1720 Para Avenue, 38400902, Uberlandia, MG, Brasil

INTRODUCTION

The genetic material of wild animals may be lost by unexpected death or acquired reproductive incapacity. The creation of biobanks has an important role in the preservation and maintenance of genetic diversity (Strand et al., 2016). According to Keeley et al. (2012), cryopreservation of gametes together with artificial insemination may aid genetic management of captive animals and may serve as a source of genetic material to be introduced in wild populations.

Epididymal spermatozoa represent excellent sources of genetic material, given their quality and maturation stage. The recovery of spermatozoa from the epididymis of dead animals is an important technique in biodiversity preservation, as these gametes are able to undergo cryopreservation, and may be used in artificial insemination, in vitro embryo production, as well as other reproductive techniques (Turri et al., 2014).

The cryopreservation protocols for spermatozoa are species-specific and depend on the time and temperature of storage for the quality of the cells to be maintained. There are several sperm collection methods, such as compression of the tail of the epididymis, slicing, extrusion by air pressure, and retrograde washing of the vas deferens (Pablors et al., 2015), as well as directional freezing methods using liquid nitrogen vapor and immersion (Arav and Saragusty, 2016).

MATERIAL AND METHODS

Sperm cells came from an adult gray brocket deer (Mazama gouazoubira) that died after being run over in the Uberlandia region, Minas Gerais, Brazil. The animal was brought to the Teaching and Research Laboratory in Wild Animals at the Federal University of Uberlandia, arriving 5 hours after its death.

The testicles and epididymis were quickly removed, placed in plastic bags, and kept in ice at 5°C during the whole processing. The tails of the epididymides were dissected, sectioned longitudinally and transversally with a scalpel blade number 23 and pressed for spermatozoa to be released. After...
that, epididymis were washed in modified Dulbecco PBS, and the liquid was recovered in a sterile flask. Physical analysis for motility (percentage) and vigor (0 to 5 scale) of the semen were carried out under a light microscope at 400x magnification. A Neubauer chamber was used to determine the number of cells per mL, and sperm morphology was carried out in a wet mount preparation using phase contrast microscopy to determine the percentage of abnormal cells (CBRA, 2013).

Semen collected was immediately diluted 1:1 in Botubov® dilution medium (Botupharma, Botucatu, Brazil). Solutions were mixed at room temperature to a final concentration of 810 million cells/mL. The sperm suspension with the diluent was placed in a beaker with water and then in a refrigerator at 5°C. The suspension was kept in equilibrium for two hours. After that, samples were placed in 0.25mL french straws (Minitub, Porto Alegre, Brazil) and frozen in a semen freezer model TK3000® (TK equipment’s, Uberaba, Brazil). The freezing curve was: 0.5°C/min to 5°C; 5°C to -32°C in 15°C/min; -32°C to -120°C in 10°C/ min. In the end of the process, samples were dipped in liquid nitrogen at -196°C and were stored in a cryogenic bottle. Thawing was carried out at 37°C/30s in a WTA® semen thawer (WTA, Cravinhos, Brazil).

RESULTS AND DISCUSSION

In this study, epididymis were processed at about 5°C, similar to the temperature used in the study by Soler et al. (2003) and by Martínez-Pastor et al. (2005) in deer, and by Pablos et al. (2015), in onager. Cooling of the epididymides soon after collection is very important to preserve the quality of the spermatozoa pre- and post-freezing (Turri et al., 2014); storage time should preferentially be no more than 24 hours (Strand et al., 2016). From this moment on, there was a progressive reduction in quality (Martínez-Pastor et al., 2005). However, epididymides of Cervus elaphus hispanicus kept at 5°C for up to 4 days kept their viability, with a little reduction in sperm motility (44.1±5.2%) in relation to the baseline values (57.6±1.6%) (Soler et al., 2003).

Sperm recovery was performed by slicing of the tail of the epididymis, similar to the technique used by Soler et al. (2003), Martínez-Pastor et al. (2005), Keely et al. (2012), and Pablos et al. (2015). This technique showed to be efficient, and the content collected had a great number of sperm cells. According to Hori et al. (2015) and Pablos et al. (2015) there is no difference between the quality of recovered sperm cells after collection and after thawing in both techniques.

Total volume of semen recovered was 3 mL and showed motility (MOT) of 80% and vigor 3 after removal from the epididymisis. These results were similar to the ones reported by López-Saucedo et al. (2014) in Iberian ibex (83.7% MOT; 3.6 vigor). However, they were lower than results by Soler et al. (2003) in deer (92% MOT; 3.8 vigor).

In the present study, a very high sperm concentration was observed, 1.62 x 10⁹ cells/mL, and total concentration of 4.86 x 10⁹ sperm cells. Lower total concentrations using the same technique were identified in Tasmanian devil (1.33 x 10⁹) by Keely et al. (2012). However, Pablos et al. (2015) found values that were higher than the results of the present study (13.85 x 10⁹ cells) in onager.

Variations in these physical parameters may be due to the characteristic of the species and/or reproductive period of the individual. In Brazil, gray brocket deer mate during the whole year, but they are more fertile in periods of high temperature and humidity (Duarte et al., 2012), the period when the study was carried out.

The percentage of abnormal spermatozoa in the semen of the gray brocket deer was 43%. However, it is important to state that 30% of these sperm cells showed distal cytoplasmic droplets, a common defect in the epididymis and in young animals, such as the animal studied here. Besides these abnormalities, proximal cytoplasmic droplets (4%), tail defects (6%), and detached sperm heads (3%) were also observed. Sperm quality superior than the one in the present study was reported by Pablos et al. (2015) in onager with 93.7±0.9% normal sperm cells, and by López-Saucedo et al. (2014) in Iberian ibex with only 3.7±0.4% abnormal cells. The good quality of spermatozoa from the tail of the epididymis was also reported by Arav and Saragusty (2016), who stated their good viability and fertility.

A good semen freezing protocol for most of the species should be carried out at 1 mm/s, at a slow gradient from +5°C to -50°C according to Arav and Saragusty (2016). The speed of freezing will determine how thawing will be performed (Soler et al., 2003). The freezing curve used in this study was efficient in maintaining the characteristics of the sperm cells, following a slow reduction in temperature both in refrigeration and freezing, similar to the one used by Keely et al. (2012) in Tasmanian devil. Soler et al. (2003), López-Saucedo et al. (2014), and Pablos et al. (2015) carried out rapid freezing for 7-15 minutes in nitrogen vapor (4-5 cm above the liquid), and then dipped the straws in nitrogen, which was also efficient.

In the present study, samples were thawed at 37°C/30 s. After thawing, motility was 30% and vigor 3. These values are considered good even for domestic animals (CBRA, 2013). The same protocol was used by López-Saucedo et al. (2014) in Iberian ibex, with 55.5% MOT and 3.5 vigor, and Pablos et al. (2015) in onager with 27.5±4.3% MOT. According to Soler et al. (2003), cell viability may be widely affected by the thawing method. When different methods were tested, the highest semen fertility indices (69.7%) were obtained with samples thawed at 37°C/20 s.

The continuous decline in wild gray brocket deer populations (Mazama gouazoubira) shows the need to characterize the reproductive biology of this species and to develop complementary tools to aid in maintaining the genetic diversity of the populations.

CONCLUSION

The results of this study show that gray brocket deer (Mazama gouazoubira) sperm cells obtained from the epididymis several hours after the death of the animal may be frozen and thawed with good viability, and may be used in in vitro assays. This information increases the knowledge on sperm biology of this species and may be employed in the effective construction of genetic banks using dead animals.
References

